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Abstract. We review symmetry breaking from the standpoint of the state labelling inherent 
in  the selection of a particular little subgroup of the original symmetry group, by the 
symmetry breaking perturbation. I n  the case of non-degenerate multiplets, we show in a 
general tensor operator formalism how the expectation values of the perturbation yield 
algebraic relations of the Cell-Mann Okubo type, and give examples in SU(u), O ( n )  and 
Sp(n). In the case of degenerate multiplets, we extend these tensor operator techniques, 
and also give a prescription for calculating the transition matrix elements of the pertur- 
bation, illustrated by examples in SU(n),  O ( n )  and Sp(n). These examples entail the 
evaluation of certain recoupling coefficients in SU(n),  O(n)  and Sp(n) which are given 
explicitly. 

1. Introduction 

Developments in particle physics in the last few years have led to renewed interest in the 
possibility of new quantum numbers and new symmetries. Recent experimental dis- 
coveries are thought to herald whole new generations of hadrons (even beyond the 
‘new’ 9 physics) and of leptons (Herb et a1 1977, Per1 et a1 1975). This has been 
reflected in theoretical proposals incorporating on the one hand higher phenomenolo- 
gical ‘flavour’ symmetries and, on the other, higher unified gauge symmetries with 
increasing numbers of ‘elementary’ quarks and leptons. Moreover, groups other than 
unitary groups are being actively considered. For example, the model of Barnes et a1 
(1978) was based on a phenomenological SO(8) symmetry, and extended to a non- 
relativistic Sp( 16) spin symmetry. Indeed, in some versions of extended supergravity, 
only orthogonal symmetry groups arise (for a review see Wess 1977). There seem to be 
only weak restrictions on possible candidates for unified gauge groups (see for example 
Gell-Mann er a1 1977). 

In the light of this interest, and for other applications, it is felt timely and useful to 
take stock of methods of extracting whatever information is available from symmetry 
arguments alone, independently of dynamical considerations. The aim of this paper is 
to present a formalism for handling symmetry breaking in perturbation theory, which 
reproduces known results in the non-degenerate case, and, as we shall show, extends to 
the treatment of the case of degenerate multiplets. 

We firstly review symmetry breaking, emphasising that the introduction into the 
Hamiltonian, H, of a perturbation, V, breaking the symmetry from a Group G to a 
group K entails a corresponding choice of state labelling in the multiplets of G (9  2). In 
9 3, taking G to be one of the classical groups SU(n), O(n)  or Sp(n), we introduce a 
general notation for their generators, and consider which irreducible tensor operators 
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are available as candidates for symmetry terms, in the enveloping algebras. Pertur- 
bation theory requires the knowledge of expectation values (il Vli), and transition 
amplitudes ( f l  Vii). For the non-degenerate case, we retrieve with our construction 
known results of the Gell-Mann Okubo type for the expectation values, and we 
illustrate with some examples in SU(n),  O ( n )  and Sp(n) (§  4). For the case of 
degenerate multiplets of G,  the transition amplitudes are required even in lowest order, 
and in Q 5 we extend the tensor operator formalism to handle this situation. The 
techniques developed are illustrated with examples in SU(n), O ( n )  and Sp(n). Some 
concluding remarks are made in D 6. 

2. Symmetry breaking and state labelling 

Consider a system with a Hamiltonian of the form 

H = H ( 0 )  + EV 

where, for E = 0, H ( 0 )  is invariant under transformations by elements g of some group, 
G:  

H ( 0 )  = U,H(O)U,' 

but not invariant for E f 0. The cases E = 0 and E # 0 are called unbroken and broken 
symmetry respectively. In  general, there will be some group K, for which V, and 
therefore H itself, are still invariant, for E f 0. We assume that K is a subgroup of G. K is 
called the little group of V, and the symmetry is said to be broken from G to K. 

The physical picture is that, for E = 0, the eigenstates of the system will be arranged 
into a number of multiplets, within each of which all eigenstates have the same energy. 
These multiplets correspond to irreducible representations of G. When the breaking 
term is turned on, and E # 0, these multiplets of G will, in general, split into sub- 
multiplets, corresponding to irreducible representations of K. 

If the breaking term is small, we can hope to perturb about the unbroken situation. 
In order to diagonalise V as well as H,  i t  is necessary to choose the correctly adapted 
unperturbed (zeroth order) states. Namely, we must arrange states in representations 
of G according to which representations of K they belong. This amounts precisely to a 
choice of basis for labelling irreducible representations of G. given by a subgroup 
labelring chain which includes K. Specifically, let us denote irreducible representations 
of G by {(U}, and of K by { K } X  where X indicates that K may include some additive 
quantum numbers which remain good in  the presence of the breaking. Then states are 
labelled as 

Here r , . . stands for a set of additional labels, which may be additional subgroup labels 
in the chain G 1. . . =  K, or they may include non-subgroup invariants, required to 
specify completely the basis, if the reduction G 1 K is degenerate. will be suppressed 
in the following discussion. Also, '. . .' stands for a set of labels which are required to 
specify states within the same K submultiplet; for our present purposes, we do not need 
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to consider them explicitly. For more details of the history of work on symmetry 
breaking and state labelling ideas, see for example Butler 1975. 

Although V is itself not invariant under G, there are very often physical grounds for 
its being decomposable into a sum of parts which at least have well-defined trans- 
formation properties under G.  That is, in general i t  can be expressed as a sum of 
components of tensor operators, transforming under some irreducible representations 
of G t .  For simplicity, we shall take V to have one irreducible part, belonging to an 
irreducible representation { p }  of G. 

However, since K is the little group of V, it is clear that, in  terms of our previous 
labelling, 

where ' - '  means 'transforms like', and {O}o represents a singlet of K. 
To treat H in perturbation theory, we require matrix elements of V. Using (1) and 

the Wigner-Eckart theorem (see for example Butler 1975), these can be expressed as a 
product of a reduced matrix element (one for each {a},  { p }  and { y } )  and a Clebsch- 
Gordan coefficient, 

From this, it is clear that we must have { K }  = { p }  and X = Z for a non-zero result. If the 
multiplets {a} ,  { y } ,  . . . of G are non-degenerate, then in lowest order we only require 
expectation values of V to calculate the spectrum (as was to be expected from our 
choice of basis for labelling states). I n  higher order, or in lowest order with degenerate 
multiplets of G, transition matrix elements of V, with { y }  #{a}, are required. 

This discussion shows that, under general assumptions about the form of the 
symmetry breaking, the problem is summarised by a certain number of reduced matrix 
elements (which can only be calculated in a more specific model), and by Clebsch- 
Gordan coefficients of the form 

We have made no attempt to pay careful attention to detail in the above discussion. 
In particular, the question of the number of reduced matrix elements involved is to be 
examined case by case; this may also depend on further assumptions (for example, that 
distinct irreducible parts of V are different components of the same irreducible tensor: 
see Feldman and Matthews 1978, and Okubo et a1 1975). Rather, the aim of this paper 
is to present techniques for calculating the Clebsch-Gordan coefficients (3). More 
exactly, since the latter are obviously the same for all states of the K-submultiplet { K } ~ ,  

our techniques are concerned with the calculation of precisely those singlet factors for 
{a}  contained in { p } X { y }  of G, in which the submultiplet corresponding to { p }  is a 
singlet 

In 00 4 and 5 below, we shall treat the cases { y }  = { a }  and { y }  # {a}  respectively. 
Firstly, however, we consider tensor operators in more detail. 

t The concept of tensor operator was developed by Wigner and Racah 
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3. Tensor operators and the enveloping algebras of U(n), SU(n) O(n) and Sp(n) 

Early work, o n  broken SU(3) symmetry (Gall-Mann 1962, Okubo 1962), and 
subsequent developments (see for example Pais 1966), centred mainly around the 
assumption that the symmetry breaking term should be a component of the adjoint 
representation of G (a ‘vector’ operator, in analogy with SU(2)). I t  was suggested (see 
for example Ginibre 1963, Lehrer-Ilamed and Goldberg 1963), finally proven for 
SU(n) (Okubo 1975), and extended to O ( n )  and Sp(n) (Rashid and Nwachuku 1976, 
Okubo 1977), that any such adjoint operator can be written as a polynomial in the 
generators of G, in an irreducible representation {a}. For SU(n),  owing to the existence 
of an nth order characteristic identity (Green 1971), this polynomial is in  general of 
order (n - l ) ,  or of lower order if {a} corresponds to a non-generic combination of 
fundamental highest weights; a similar statement obtains for the other simple Lie 
algebras (Ginibre 1963, Bracken and Green 1971, Okubo 1975). In practice, this 
means that for the symmetry breaking term, a component of the adjoint operator, the 
expectation values can be written as a linear combination of terms recognizable as 
invariants of the little group K (whose eigenvalues can in principle be written down in 
terms of the highest-weight labels of the submultiplet { K } ~ ,  and other labels higher in 
the labelling chain), together with unknown reduced matrix-elements, which can be 
fitted by comparison with the experimental masses, magnetic moments, and so on 
(examples will be given in the next section). 

In the present work, we wish to generalise this procedure to include the possibility of 
calculating transition amplitudes. Moreover, we remove the previous restriction to the 
adjoint operators only (as was found necessary early on, see Pais 1966). In this more 
general situation, there is no longer any proof available that the tensor operator in 
question can be realised as a polynomial in the generators of G (an element of the 
enveloping algebra of G). Nonetheless, we shall continue to assume that it is useful to 
utilise the enveloping algebra for the construction of symmetry breaking terms. We 
take a pragmatic attitude to the problems of the sufficiency and completeness of this 
approach: for, in any given example, we can always determine separately the number of 
independent couplings involved, and ascertain whether or not in the algebraic tech- 
nique the correct number of independent terms is present. For the examples which we 
take, this will indeed be the case. 

There is one fundamental limitation to our general goal of constructing tensor 
operators in the enveloping algebra of G, which should be pointed out. I t  is that only 
certain irreducible representations are available. For, if we designate the generators of 
G by X,,Xu, . . . , then the enveloping algebra is generated by monomials 
X,, Xdr, ,  Xdr,x, ,  . . . , which have various irreducible parts, obtained by appropriate 
symmetrisation. However, since any monomial X ,  . . . Xu. . . can be re-ordered, by 
using the commutation relations, as X,,Xu. . . plus lower order terms, it is clear that any 
anti-symmetrisation must reduce the degree (formally, the enveloping algebra is the 
free algebra of X,, Xu, . . . factored by the ideal generated by XJU -XuXp -[X,, Xu]). 
Thus it is clear that the irreducible constituents of the enveloping algebra transform as 
symmetrised Kronecker powers of the adjoint representation. For the simple classical 
Lie algebras, the lowest symmetrised powers of the adjoint representation are given in 
table 1 (here and subsequently, we follow the notation of King 1975). Despite this 
apparent limitation, there are often physical arguments (for example, that the symmetry 
breaking term should couple symmetrically, in order for a Lagrangian to be con- 
structed) which yield the same type of restriction. 
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Table 1. Lowest symmetrised powers of the adjoint for SU(n) ,  O ( n )  and Sp(n). 

Group and 
adjoint Power Irreducible constituents 

O ( n )  2 rol+[21+[221 +[141 
[121 3 2[ 1 7  + [3 11 + [32] + [2 12] + [22123 + [14] 

We end this section by giving a consistent notation for working with the generators 
and higher-order covariants of the classical Lie algebras (Bracken and Green 1971, 
Green 1971). 

We start with a set of U ( n )  generators, EAB, A ,  B = 1, . . . , n ;  with the commutation 
relations 

[EAB, EcD]  = S B c € A D  - SADECB 

A A B  = EAB - ( 1 / n ) 8ABEcC 

(4) 

( 5 )  

in a representation such that (EAB)T = E B ~ .  The SU(n) generators AAB are defined as 

(with a summation convention for repeated indices), and again satisfy the commutation 
relations (4). Next, we introduce a metric tensor gAB, A ,  B = 1 , .  . . , n, and the 
generators 

RAE = EACgcB - 77EBcgcA (6) 
where gAB = TgBA, 77 = +1 for O(n) ,  and -1 for Sp(n). The RA, satisfy the com- 
mutation relations 

[RAE, o C D l =  g C ~ R A D - g A C R B D + g D B R C A - g A D R C B .  (7) 

These also serve for the transformation properties of the higher-order tensor operators. 
For example, by using an inverse metric tensor g A B ,  where 

B 
gACgcB = S A  7 

(and n must be even, for Sp(n)), we can define the matrix powers 

(8) 
EF 

0 2 ( * ) C D  = RCEg a F D ,  
fl‘” 

CD = a C D ,  

and so on. These transform under RAB in the same way as acD, as in (7). 
Finally, it is clear from the commutation relations that the traces of the matrix 

powers, C, = ~ k p ) ~  (where xAB is any of or are invariants, and 
generate a complete set of algebraic invariants of G (the Casimir operators). The 
eigenvalues of the C, are given in a convenient form by, for example, Rashid and 
Nwachuku 1978, and Edwards 1978. 

In table 2 we collect together the above formulae for the generators and com- 
mutation relations of U ( n ) ,  SU(n),  O ( n )  and Sp(n), and give a convenient choice of 
metric for O ( n )  and Sp(n). Also given in each case are a set of diagonal generators 
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(which will define the weights), and the eigenvalue of the second Casimir invariant CZ 
(which is all we require in the following), in  terms of the highest weight labels of the 
irreducible representation. 

We are now ready to apply the ideas and tools developed in this section to the 
construction of tensor operators and their matrix elements. We turn firstly to the 
expectation values. 

Table 2. Notation for classical Lie algebras. 

" 
1 A , ( h L + n + 1 - 2 i )  

, = I  
c2 

" - 1  

, = 1  1=1  
1 & ( A ,  + b  + 1 - 2i) - ( l / n ) ( " f '  A Z j 2  

X 
G 

H 

[. 1 

c2 
[n /2 l  

2 1 Ai(A2+n-2i)  
, = 1  

Table 3. Normalisation of generators of U(n) ,  SU(n) ,  O ( n )  and Sp(n). 

Generators Normalisation 

4. Expectation values of tensor operators 

Let us assume that, in a given broken symmetry situation, we have chosen, on physical 
or other grounds, that the symmetry breaking term V, should have a little group K,  by 
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hypothesis a subgroup of G. Suppose we wish to construct the expectation values of V 
in a certain irreducible representation, {a} ,  of G. We proceed as follows: 

Algorithm 1 
1 The candidates for irreducible symmetry breaking terms are precisely those irre- 

ducible constituents, { p }  say, coupling to { a } x { a }  which contain one or more K 
singlet parts, {O}o 
For each {p } ,  execute steps 2.1 to 2.3 
2.1 

2 
From the list of symmetrised powers of the adjoint representation, table 1, 
identify in what orders { p }  occurs. If there are more occurrences than the 
multiplicity of { a }  in { p }  ~ { a } ,  then the highest order ones are redundant. 
For each order, say (p), construct the irreducible tensor operator V‘”’-{p}. (If 
the generators are written in matrix form XAB, this step is straightforward.) 
For each orthogonal K-singlet {O},,, execute steps 2.3.1 to 2.3.2. 
2.3.1 
2.3.2 

2.2 

2.3 
Project out the K-singlet component. 
Try to rearrange the expression for it into a linear combination of 
independent K-invariants (Casimir invariants and other non-sub- 
group invariants), with numerical coefficients. 

Return to 2.3 until  completed. 
Return to 2 until completed. 

3 The most general form of V is an arbitrary linear combination of expressions of the 
form 2.3.2. 
This algorithm should be read in conjunction with the following general points. In  

step 1, there may be independent grounds (for example, the symmetry type of the 
couplings) for rejecting some candidates. In step 2.1, by hypothesis, at least one 
symmetrized power of the adjoint contains {p} .  Otherwise, the method is obviously 
inapplicable. 

As explained in connection with the order of the polynomial representing an adjoint 
operator, if { a }  is non-generic, then some of the (higher order) occurrences of { p }  in 
symmetrised powers of the generator, will be redundant, in the irreducible represen- 
tation {a}.  Finally, in step 2.3.2, the eigenvalue of the rearranged expression can, in 
principle, be written down immediately, in an arbitrary representation, in terms of the 
various highest weight, and non-subgroup, labels. 

The total number of reduced matrix elements, in the most general form of V, will be 
C{s}C(p,C{o},l. Thus, if { a }  has some larger number of K-submultiplets, we obtain an 
appropriate number of constraints on the expectation values of V (Feldman and 
Matthews 1979). In  practice, however, i t  is often unnecessary to consider the most 
general form. A general ‘rule of thumb’ seems to be that ‘higher order’ occurrences of a 
given symmetry breaking term in the enveloping algebra (in the sense of symmetrised 
powers of the adjoint), are ‘higher order’ in the sense of the smallness of their 
contributions. 

We now illustrate this algorithm with some examples. 

4.1. Example 1 S U ( n ) z S U ( n - l ) x  U(1) 

Consider a system with symmetry SU(n) broken to SU(n - 1) X U(1). We have 

{ i} x { I} = { i ; I} + {o} 
{i; i}x{ i ;  I}= ({o}+{i; i}+{i2;  i2)+{2; 2})s+({i; i}+{i2; 2}+{Z; I*}).+ 



8 P D Jarvis 

For this example, we shall be interested in symmetry breaking terms coupling sym- 
metrically to {i; 1). We have the following reductions from SU(n) to SU(n - 1) X U(1): 

(1) = {l}l," +{O)-(n-l),n 

{ i ;  1) = {i}-l +{o}, +{i; I},+ { I } ~  

{i2; i2}={i2; i}-l+{i2; i2}o+{i; i2}1 

(2; 2) = { 2 } - 2 { 2 ;  I} -~  +{i}-l + (2; 2),+ {i ; I), + {o}o+{i)l{i; 2), + {2)2. 

(9) 

Therefore, the available SU(n - 1) X U( 1) singlets (apart from the overall singlet) 
coupling symmetrically to {i; 1) are in { i ;  l} and {?; 2). 

From table 1, we see that {i; 1) occurs once in order one and two, and in general 
twice in  order three of symmetrised powers of the adjoint (that is, {i; 1)). For n = 3, the 
cubic terms are not independent, even in a generic irreducible representation. Thus, 
the qrder one and two occurrences are always sufficient: the result is the Gell-Mann 
Okubo formula (Gell-Mann 1962, Okubo 1962). The quadratic generalisation (see 
below) is still sufficient for the adjoint, but in a generic representation, higher order 
terms are required. 

Also from table 1, we see that (2; 2) occurs once in order two, and once in order 
three, in symmetrised powers of the adjoint. However, since there is only one coupling 
to (7; 1) and the quadratic occurrence suffices. In general, however, higher-order terms 
may occur. 

Let us carry out, for the (2; 2) operator of symmetrised order 2, the remaining steps 
of the algorithm. Firstly (step 2.2) we construct the tensor operator {j; 21. In terms of 
the generators AAB of SU(n) (table 2), it is 

wABCD = &ECD - ( n  + 2)-' YABCD f [ ( n  + l ) ( n  + 2) ] - 'ZABCD 

and {, } stands for the anticommutator. Next, (step 2.3.1), we must project out the 
SU(n - 1) X U(1) singlet piece. For completeness, and for later use, the reductions of 
both { i ;  l), AAB, and (2; 2}, WAB , into their common irreducible pieces under 
SU(n - l ) X U ( l ) ,  are given in table 4. Some additional notation is also introduced 
there. 

I t  remains (step 2.3.2) to rearrange the expression for the SU(n - 1) X U ( l )  singlet 
ZnW (table 4) in  terms of the generating system of invariants. The result, after 
straightforward algebraic manipulation, is 

CD . 

"- 1 {0}, 

note that the dimension of (2;  2) is 

d{2.2} = i n 2 ( n  - l ) ( n  + 3). 
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Table 4. Common submultiplets of Su(n - 1) x U(1) in {i: 1) and {z; 2) of SU(n) .  

Submultiplet 
state {I; 11 N 2  4 { 2 ; 2 }  N 4 

The form of result (11) can be compared with that of the S U ( n )  (quadratic) Gell-Mann 
Okubo formula, which can be obtained in the same way. It is 

{i; =a2z,+a3(n(n-2)2,2+(n-l)(n-2)C2{n}-n(n-1)Cz{n-1}) (12) 
I/-! { O b  ) 
and d{1,1} = 2 n - 1. Here a l ,  a 2  and a3 are arbitrary constants. 

4.2. Example 2 

Consider a system with a symmetry O ( n )  broken to O ( n - 2 ) x U ( l ) .  We wish to 
construct symmetry breaking terms coupling symmetrically to the fundamental 
representation [l]. We  have 

[ l I X [ l l =  (rol+[21)s+[121A i13) 

O ( n )  2 O ( n  -2) x U ( l )  

and the following reductions from O ( n )  to O(n - 2) x U( 1): 

[I1 = [OIL, +[110+~011 

[121 = 111-1 + [1'1" + LO10 + [ I l l  

P I  = [01-2+[11-1 +r210+[010+[111+[012. 

Hence the only available symmetry breaking term coupling symmetrically is [2] .  From 
table 1 this occurs once in symmetrised order two, not in symmetrised order three, and 
again in symmetrised order four, in the enveloping algebra. However, for the 
fundamental, 

[21 x [I1 = [I1 + r211 + [31, 

so that there is only one  coupling, and the quadratic suffices. Again, in general higher 
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orders may be required; however, for n s 8, the fourth order terms are redundant, and 
the quadratic suffices even for a generic representation. 

Let us carry out for the [2] of symmetrised order two, the remaining steps of the 
algorithm. Firstly (step 2.2), we construct the tensor operator [2]. In terms of the O ( n )  
generators X A ~  (table 2), it is 

MAS = { ~ A c & B ) -  ( ~ I ~ ) ~ A S { & D C D ~ I  (15) 

Next (step 2.3.1), we must project out the O(n - 2) X U(1) singlet piece. Once again, for 
completeness and for later use, the reductions of both [12], C A ~  and [2],  MA^ into their 
common irreducible parts, under O(n -2)  X U(1), are given in table 5, together with 
some additional notation. 

I t  remains (step 2.3.2) to rearrange the expression for the O(n -2) x U(1) singlet 
component (table 5) HK,;f/2] in terms of the independent invariants. The result, after 
straightforward algebraic manipulation, is 

v- 1;;;J = u ( ( n  -4)C2[n]-nC2[n -2]+2nHf,,;f1) 

where a is an unknown constant. Note that 

d [ 2 ' = t ( n - l ) ( n + 2 ) .  

4.3. Example 3 

Consider a system with symmetry Sp(2p + 29) broken to Sp(2p) x Sp(2q). We wish to 
Sp(2p + 2q) 3 Sp(2p) x Sp(2q) 

Table 5. Common submultiplets of O(n -2) x U(1) in [12] and [2] of O ( n ) .  

Labelling 
chain O ( n )  I O ( n  -2)  x U(1) 3 O(n -4) xU(1)  x U(1) 3 

Notation 
for 
states 

Submultiplet 
state [1*1 N 2  4 [21 N2 4 

I-' 16 + M-' 

+ 

z' 16 + M+- 

128(n-2) 

( n  -2)' 
128- 

n 

c 

128(n-2) - 
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construct symmetry breaking terms coupling to the fundamental representation (1). We 
have 

(l)x(1)=(2),+((1’)+(0))*, (17) 

and the following reductions from Sp(2p + 2q) to Sp(2p) X Sp(2q): 

(1) = (1) x (0 )  + (0 )  x (1) 

(2)=(2)x(0)+(1)x(1)+(0)x(2) (18) 

( 1’) = (1 ’) x (0 )  + (1) x (1) + (0) x (0 )  + (0 )  x ( 12). 

Hence the only available symmetry breaking term is ( 12) (which actually couples 
antisymmetrically to (1)). From table 1, this occurs once in symmetrised order two, not 
in symmetrised order three, (and again in symmetrised order four, and so on), in the 
enveloping algebra. However, for the coupling to (l),  

(1’) x (1) = (21) + (13) + (1) 

so that there is only one coupling, and the quadratic suffices. As before, in general, 
higher orders may be required; however, for n s8, the fourth order terms are 
redundant, and the quadratic suffices, even for a generic representation. 

Let us carry out for the (12) of symmetrised order 2, the remaining steps of the 
algorithm. Firstly (step 2.2), we construct the tensor operator (12). In terms of the 
Sp(2n) generators Z A B  (table 2), it is 

(19) CD I - 2  c QAs = J {SAC, z : o ~ } - n -  JAB= c . 

Next (step 2.3.1), we project out the Sp(2p) x Sp(2q) singlet piece. Again, for 
completeness, and for later comparison, the complete reductions of both (2), Z A B ,  and 
(l’), QAB,  into their common irreducible constituents under Sp(2p) X Sp(2q), are given 
in table 6, together with some additional notation. 

I t  remains (step 2.3.2) to rearrange the expression for the Sp(2p) x Sp(2q) singlet 
component iQ (table 6) in terms of the independent invariants. The result, after 
straightforward algebraic manipulation, is 

where n = p +q, and a is arbitrary. Finally, note d‘12’= ( n  - 1)(2n + 1). 

4.4 .  Example 4 

Consider a system with symmetry Sp(2n) broken to SU(n) x U(1). We wish to construct 
symmetry breaking terms coupling to the fundamental representation (1). Again we 
have (17), and the Sp(2n) 3 SU(n) X U(1) reductions are 

Sp(2n) 2 SU(n) x U(1) 
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Labelling 
chain 

Notation 
for states 

Definitions 2= 1 
z, = - (E, ,+"-p-'Z) 

x, = - (Eqqt"-q-12)  

m = p + 1  

P 

io= X OK,+,  
K = l  

Submultiplet 
state (2) 

- 
io 4P 

49 - 

64(n + l)(-) P - 1  + 

64(n + l)(-) 9 - 1  - 

P 

9 

Hence the only available symmetry breaking term is (2) (which couples symmetrically to 
(1)). From table 1, this occurs once in  symmetrised order one, not in symmetrised order 
two, and in  general twice in symmetrised order three, and so on, in the enveloping 
algebra. For the coupling to (l),  

(2)x(1)  = (3)+(21)+ (I), 
there is only one coupling, and the linear term suffices. As before, in general, higher 
orders may be required. 

Let us carry out, for the (2) of (symmetrised) order one, the remaining steps of the 
algorithm. Obviously (step 2.21, the tensor operator is ZAB. For the reductions to 
SU(n) x U(1) (step 2.3.1),  table 6 gives the common irreducible constituents of both ( 2 ) ,  
EAB, and (1 ), Q A B  respectively. 2 
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Step 2.3.2 is trivial, since the singlet component 
independent invariants of SU(n) x U(1). Thus we have 

(table 6 )  is already one of the 

where a is arbitrary. Finally, note that 

d'*' = n(2n + 1). 

5. Transition matrix elements of tensor operators: 

In  this section, we extend our formalism to encompass the calculation of transition 
matrix elements of the symmetry breaking terms (tensor operators). The major new 
ingredient required is the introduction of a norm for the enveloping algebra. 

We take the U(n) generators EAB (table 2) in a (reducible) representation with a 
cyclic state I ), which is a U(n)  singlet. The n 2  states EABI ) clearly transform like the 
adjoint representation, {I} x (1). We shall assume that they are orthogonal states, of 
length 2: 

(IEABECD))= (I(EBA)tECDI) = 26ADSBC. (23) 

( jEABECDEEFEGG I) = 46,4H6BG6CF8DE. 

Similarly, the states EABEcDI) transform like ({I} x {1})2, and have the normalisation 

( 2 4 )  

This can obviously be extended to any monomial in the generators. 
This also specifies the normalisation of the generators AAB, XAB and EAB, of SU(n),  

O ( n ) ,  and Sp(n) respectively, which are defined in terms of the EAB (table 2). These are 
given in table 3. 

Using this realisation, we can now construct normalised states (up to a relative 
phase) of the admissible irreducible representations, explicitly in terms of the genera- 
tors. As before, the admissible irreducible representations available to us are those in 
symmetrised powers of the adjoint (table 1). Before giving an algorithm for computing 
transition matrix elements, we must complete the specification of the normalised states 
by giving a phase convention. 

Firstly, we choose in G a complete set of rank G independent diagonal generators H 
(for example, see table 2). We shall assume that, in an irreducible representation {a} ,  a 
total ordering of states has been specified, which contains the usual lexical partial 
ordering by weights (since the irreducible representations are finite-dimensional, this 
can always be done). Also, we select a set of rank G independent weight lowering 
generators X - .  

Consider an admissible irreducible representation { a }  of G. We can identify (up to a 
phase) the unique highest-weight state with a component of the normalised irreducible 
tensor : 

The matrix elements of the X -  (and their hermitean conjugates X, )  between states of 
{ a }  may be obtained by commutation with the appropriate component of V. Our phase 
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conventions for the states in {a}  are in fact established by specifying the phases of the 
matrix elements of X - ,  as follows: 

Phase Conventions 
1 The highest-weight state of {CY} is assigned a positive phase: 

2 
3 

For U(n) and SU(n), the matrix elements of each X -  (and X, )  are positive. 
For O(n) and Sp(n), and for each X - ,  the highest state (relative to the total ordering) 
which couples through X -  to a given state, has a positive matrix element. 

Suppose we wish to calculate Clebsch-Gordan coefficients of the form 

where { a }  # { y } .  That is, we wish to evaluate those singlet factors of K in { a }  contained 
in { p }  X { y }  of G, for which the K-submultiplet is a singlet (see (2)). Our procedure is 
the following: 

Algorithm 2 
1 

2 

The number of independent couplings is the multiplicity of the singlet {0} in 

Establish the symmetrised orders in the enveloping algebra (table 2) in which {a} ,  
{ p }  and { y }  occur. The number of independent couplings should correspond to the 
independent combinations in which order {CY} = order {p}+  order { y } .  
For each such coupling, execute steps 3.1 to 3.4. 
3.1 

3.2 

3.3 

3.4 

Return to step 3 until completed. 

In step 3.4, it is often easier to extract the required singlet factor by identifying the 
appropriate term in the expression for the particular component of {a} ,  provided this 
term is orthogonal to the remainder of the expression. 

{a x {PI  x {Y}. 

3 
Construct the tensor operators corresponding to {a i ,  { p }  and { y } ,  in the 
appropriate order. 
For {CY} and { y } ,  and for each common K suEmultipiet { K } X ,  project out a 
normalised state, with the correct phase. 
For { p }  project out the normalised K-siriglf:: s;tate(s), with the correct 
phase (s). 
For each such singlet state, and for each state 3.2, ferm the inner product (26), 
and evaluate it using the table 3. 

We end this section with some examples to illustrate the algorithm. 

5.1. Example 5 SU(n)=SU(n- l )xU( l ) :  {2;2} in {i; l}x{i ;  1) 

From example 1, Q 4.1, we know that there is only one coupling, corresponding to the 
occurrence of (2; 2) in symmetrised order two in the enveloping algebra (steps 1, 2). 

We label states according to the subgroup chain (table 4). 
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where the orthogonal diagonal generators are 

Z,, = -A," 

Zn-l = + ( n  - l ) - 'A ," )  

Zn-2 = -[An-2n-2+ ( n  - 2)- ' (An-1n-1 +A,-2"-2)]. 

and so on. We take as the independent shifting operators the set 

A ~ ~ + ' , A = I , . .  . , n - ~ .  

In table 4 the tensors WABCD (see (10) )  and AAB are decomposed with respect to 
SU(n - 1 )  x U(1) (only the common submultiplets are shown: cf ( 9 ) ) .  States belonging 
to each submultiplet are shown, together with their normalisations N 2 ,  and relative 
phases (up to an overall sign). The latter may be verified directly from the phase 
conventions, and the commutation relations (steps 3.2 and 3.3). 

As an example of these steps, we have from (10) the following expression for WE-' E 
(see table 4) .  

2n2  2 1 w;-' ; = -  {A:-~Z,}--{ -- n - 1  a n - l a Z n r  A."} ( n  - l ) (n  + 2) n + 2  

The first term contributes to the normalisation N 2  an amount 

the cverall factor 2 coming from the anticommutator. From the second term with 
a # n - 1 ,  we have 

and with a = n - 1 ,  we have 

2 [ r ] 2 . [ 2 n - 2 ] . 2 ,  2 
n + 2 )  n - 1  

and since the terms are orthogonal, the result is 

32n 
( n  - l ) ( n  + 2 ) '  

N2 = 

The singlet factor (and its correct relative phase) can now be written down from the first 
term, taking into account the normalisation of A,-'" and 2, (step 3.4). 

The singlet factors thus evaluated are summarised in table 5(i). They can be 
checked, for the cases n = 3 (27 contained in 8 X 8) and n = 4 (84 contained in 15 X 15), 
by consulting published tables: see for example Haacke et a1 1976. 

5.2. Example 6 

There is in general only one coupling of [ 1 2 ]  X [I2]  to [ 2 ] ,  since 

O ( n ) = O ( n - 2 ) X U ( l ) :  [2]  in [ 1 2 ] X [ 1 2 ] :  

[ 1'1 x [ 1 7  = [ O ]  + [2]  + [ 1 2 ]  + [22] + [2 12]  + [ 141. 

Obviously, we take the [ 1 2 ]  factors linear (symmetrised order 1) in the generators, 
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Also, from table 1, it can be seen that [2]  occurs once in symmetrised order 2 in the 
enveloping algebra, not in symmetrised order 3 ,  and again in  symmetrised order 4, and 
so on. Thus the quadratic is sufficient (steps 1, 2) .  

We label states according to the subgroup chain 

~ ( ~ ) ~ ~ ( ~ - ~ ) x ~ ( ~ ) H ~ ~ , ~ ~ ~ ~ ( ~ - 4 ) x ~ ( ~ ) ~ ~ ~ , ~ ~ - l x ~ ( ~ ) H ~ ~ ~ ~ ~ ~ ~ ~  ' 3 

where the orthogonal diagonal generators are 

H [ n / z ] =  i X - 1  n ,  Jf[n/2]-1= i x n - 3 n - z .  

and so on. We take as shifting operator (see table 4(ii)) 

(30)  

in order to define the phases. 
In table 5 ,  the tensors M A B  (see (15)) and CAB are decomposed with respect to 

O(n - 2)  x U ( l )  (only the common submultiplets are shown: cf (14)). States belonging 
to each submultiplet are shown, together with their normalisations N 2 ,  and relative 
phases (up to an overall sign). The calculation of the normalisations N 2  proceeds as in 
the previous example (steps 3.2 and 3.3). 

As an example of these steps, let us follow the determination of the relative phases in 
O(n) .  Using the shifting operator C'- and (15), and in the notation of table 5 ,  we have 
the following commutation relations: 

+- E =Xn-3n- l+ iEn-3n  - iXn-2n- l+L-2n  

[E+-, M - + ] =  2HE/2]-,  - [ 2 n / ( n  -2)]H&,,  

[E+-, HiY/2,] = 2M+-,  

[C+-, H&-l  3 = -2((n -4) / (n  -2) )M+-,  

so that, using the phase conventions, with M-' conventionally assigned a positive 
phase, the relative phases of HKl21, Hk/2~-1 and M'- are -, + and -, respectively. The 
same calculation, but with X([l']) instead of M ( [ 2 ] ) ,  gives, for 2-+ conventionally 
positive, the relative phases of H[n/23, H[,/ZI-~ and E'- to be +, - and +. 

The singlet factors thus evaluated are summarised in table 7(b). Again, they can be 
checked, in specific cases, by consulting published tables: for example, for n = 8, see 
Barnes et a1 1978. 

5.3. Exampie 7 

There is, in general, only one coupling of ( 2 )  X ( 2 )  to ( 12), since 

sp(2p + 2q)  3 S U ( ~ )  x ~ ( 1 )  x S U ( ~ )  x S U ( ~ ) :  (I*) in ( 2 )  x ( 2 )  

( 2 )  x ( 2 )  = ( 0 )  + (1') + ( 2 )  + (2') + (3) + (4). 

Also, from table 1, it can be seen that (12) occurs once in symmetrised order two in the 
enveloping algebra, not in symmetrised order three, and again in symmetrised order 
four, and so on. Obviously, we take the ( 2 )  factors linear (symmetrised order 1) in the 
generators: thus, the quadratic occurrence is sufficient (steps 1, 2). 

We label states according to the sub-group chain 

sP(2P+2q) = ~ P ~ ~ P ~ ~ ~ P ~ ~ q ) = s u ~ P ~ ~ U ~ ~ ~ ~ ~ u ~ 1 ~ ; ~  . . . ,  

and as in (27) within S U ( p )  and SU(q). The diagonal generators 2 and 2 are defined by 
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Tsble7. (a). Singletfactorsof S U ( n - l ) x U ( l ) f o r  {i; l}X{i;  l}contains{2;2}of SU(n) .  
(b). Singlet factors of O ( n - 2 ) x U ( l )  for [l’]X[l’] contains [2] of O ( n ) .  

(a) 

+ 1/21/’[ i l l ’ ’  

n - 2  

respectively. Since the little group SU(p) X U ( l )  x SU(4) X U(1) has rank two less than 
Sp(2p + 2 q ) ,  we must define two independent shifting operators, to specify the phases: 

-+- - - = - = p , n  --- 3 
-i = - - r  - - p + n  2n. 

Finally, note that in view of (18) and (21), there are now two independent 
SU(p) X U( 1) x SU(q) x U ( l )  singlets in (2), occurring in the submultiplets (2) x (0) and 
(0) x (2) of Sp(2p) x Sp(2q) (step 3.4). 

In table 6, the tensors QAB (see (19)) and ZaB are decomposed with respect to 
SU(p) x U(1) x SU(q) x U(1) (only the common submultiplets are shown: cf (18) and 
(21)). States belonging to each submultiplet are shown, together with their normalisa- 
tions N 2 ,  and relative phases (up to an overall sign). The calculation proceeds as in the 
previous two examples; care must be exercised in the application of the phase 
conventions. The singlet factors thus calculated are summarised in table 8 .  

6. Conclusions 

In this paper we have developed tensor operator techniques, appropriate to the 
investigation of assumptions about patterns of symmetry breaking, in the context of 
perturbation theory. We have retrieved familar results of the Gell-Mann Okubo type 
for expectation values, and with the same formalism, we have been able to evaluate 
transition matrix elements. The latter extension is particularly significant in the cases of 
groups O(n)  and Sp(n),  where mixing problems between degenerate multiplets are 
generally more severe (for example, between symmetric and antisymmetric parts, [2] 
and [12] or (2) and (12)), than in the case of SU(n)  (for example, between the adjoint, 
(1; 1) and singlet (0)).  
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Table 8. Singlet factors of SU(p) x U(1) x S U ( q )  x U(1) for (2) X (2) contains (1’) of 
SP(2P + 2s). 

(1’) state (2) state 

0 

0 

In the literature of the past few decades, the multitude of approaches taken to the 
solution of group-theoretical problems in physics fall into two broad categories (Baird 
and Biedenharn 1963). What may be termed ‘global’ methods (see for example Weyl 
1939) include classical tensor and character techniques, having their origins in the work 
of the great algebraists at the turn of this century. The comparatively more recently 
developed ‘local’ or ‘algebraic’ methods, including formal boson operator methods, 
realisations on spaces of homogeneous functions, and so on, were spurred on by 
developments in physics, especially in spectroscopy (see for example Wigner 1959, 
Racah 1965). Most recently, however, physics has turned again to embrace the global 
approach as well. The techniques advocated in this paper can be viewed as intermediate 
in nature, in that both tensor and Lie algebraic methods are exploited to good effect. 
This situation is possible partly because the formulation of the problem, entailing as its 
does a very special form for the symmetry breaking term as a singlet state with respect to 
the little group, removes the necessity for much of the Young symmetrisation which 
normally plagues the classical tensor methods. 

I t  is well to emphasise here some of the limitations of our techniques. One such has 
been pointed out  already: we have been exclusively concerned with the realisation of 
irreducible tensor operators in  the enveloping algebra, which corresponds to 
irreducible constituents of symmetrised Kronecker powers of the adjoint represen- 
tation. In order to generalise our work further, we would need to introduce, for 
example, a tensor operator transforming as the defining representation (playing the role 
of a ‘boson’ operator). Also, in our examples we have not gone further than sym- 
metrised quadratic order in  the generators. Our method, also generalised in the above 
sense, still applies to higher-order constructs; the only difficulty lies in writing down the 
eigenvalues of a generating set of the higher order little group invariants. However, 
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recent work by Green (1975), Rashid and Nwachuku (1978), and Edwards (1978) 
considerably simplifies this task. Work on problems of higher-order examples is 
continuing . 

Our examples ( 8 0  4 and 5 )  only involved little sub-algebras which were regular 
sub-algebras of the classical simple Lie algebras. The method obviously applies equally 
to non-regular sub-algebras. For example, the non-simple maximal S-sub-algebras 
(Dynkin 1952, Lorente and Gruber 1972) SU(3) x SU(2) c SU(6), SU(2) X SU(2) c 
SU(4) are of great physical relevance. I t  is known that in  the former case, expectation 
values of symmetry breaking terms involve two ’non-commuting labelling chains’ (see 
for example Pais 1966). It is likely that similar complications obtain for other 
non-regular embeddings, although in many cases, such as the maximal simple S-sub- 
algebra SU(3) c SO(8), other measures, such as non-sub-group labels, are called for 
(see also the list of suggested applications given below). 

It is of interest to establish the general validity of the enveloping algebra realisations 
for all admissible irreducible tensor operators, on the same footing as it is known for the 
adjoint representation (Okubo 1975, Rashid and Nwachuku 1976). As was explained 
in Q 3,  in  our work we have made this assumption throughout, but have checked it case 
by case. Further work in this direction is in progress. 

I t  might be thought that the calculation in P 5, of singlet factors of the sub-group K,  
for { a }  contained in { p }  x { y }  of K,  where the K-submultiplet is the singlet {O}o, admits 
of a more generai solution, for example in terms of the eigenvalues of a generating set of 
invariants of {a} and { y }  and of the appropriate K-submultiplet { K } ~  (in analogy with 
the algebraic formulae of Q 4). Such a solution would be applicable to general ( a }  and 
{ y } .  However, in the course of this investigation, such a solution has not been found. 

Finally, having seen its usefulness in symmetry breaking, we mention briefly some 
other applications of this work. In  its own right, it provides a powerful method of 
evaluating Chebsch-Gordan coefficients. I t  differs from what might be called ‘quark 
state’ techniques in that only the required information is extracted, whereas in the latter 
method, each irreducible multiplet must be fully constructed explicitly in  terms of basic 
states. Lastly, we mentioned above the possible difficulties with subgroup chains 
involving a state labelling problem; in fact, our realisations may be useful in its 
resolution. For example, it is hoped to be able to apply this to the O ( n )  c SUCH) 
problem (Jarvis 1974, Green er a1 1976). 

Acknowledgements 

The incentive for the work presented in this paper arose from work done in collabora- 
tion with Professor K J Barnes and Dr I J Ketley, and I wish to thank them for their 
continuing interest. Part of the material is based on informal lectures given to the 
particle physics theory group at Southampton. Finally, I am grateful to Dr R C King for 
many stimulating discussions on the subject. 

References 

Barnes K J ,  Jarvis P D and Ketley I J 1978a J .  Phys. A :  Math. Gen. 11 1025 

Baird G E and Biedenharn L C 1963 J.  Math. Phys. 4 436 
- 1978b .I. Phys. G: Nucl. Phys. 5 1 



20 P D Jarvis 

Butler P H 1975 Phil. Trans. R .  Soc. A 277 545 
Bracken A J and Green H S 1971 J. Math. Phys. 12 2099 
Dynkin E 1952 Mat. Sb. 30 349 ( A m .  Math. Soc. Trans. 1957 Ser. 2 6 111) 
Edwards S A 1978 J. Math. Phys. 19 164 
Feldman G and Matthews P T 1977 Trieste preprint 1C/77/99 
Gell-Mann M 1962 Phys. Rev. 125 1067 
Gell-Mann M, Ramond P and Slansky R 1977 Los Alamos preprint LA-UR-77-2095, submitted for 

publication to Rev. Mod. Phys. 
Ginibre J 1963 J. Math. Phys. 4 720 
Green H S 1971 J. Math. Phys. 12 2106 
- 1975 J. Aust. Math. Soc. 19 B 129 
Green H S ,  Hurst C A and Ilamed Y 1976 J. Math. Phys. 17 1376 
Haacke E M, Moffatt J W and Savaria P 1976 J. Math. Phys. 17 2041 
Herb S W et a1 1977 Phys. Rev. Lett. 39 252 
Jarvis P D 1974 J. Phys. A:  Math. Nucl. Gen. 7 1804 
King R C 1975 J. Phys. A:  Math. Gen. 8 429 
Lehrer-Ilamed Y and Goldberg H 1963 J. Math. Phys. 4 501 
Lorente M and Gruber B 1972 J. Math. Phys. 13 1639 
Okubo S 1962 Prog. Theor. Phys. (Kyoto) 27 949 
- 1975 J.  Math. Phys. 16 528 
- 1977 J. Math. Phys. 18 2382 
Okubo S, Mathur V S and Borchardt S 1975 Phys. Rev. Lett. 34 326 
Pais A 1966 Rev. Mod. Phys. 38 215 
Per1 M et a1 1975 Phys. Rev. Lett. 35 1489 
Racah G 1965 Tracts in Modern Physics (Berlin: Springer) 37 28 
Rashid M A and Nwachuku C 0 1976 J. Math. Phys. 17 1611 
_. 1978 J. Phys. A 11 457 
Wess J ’Supersymmetry-Supergravity’, Proc. 8th GIFTSeminar on Theoretical Physics, Salamanca, 1971, to 

Weyl H 1939 ‘The Classical Groups’ (Princeton, NJ: Princeton University Press) 
Wigner E P 1959 Group Theory and its application to the Quantum Mechanics of Atomic Spectra, translated by 

appear in Springer Tracts in Modern Physics 

J J Griffin (New York, NY: Academic Press) 


